Review 1

Dr. Kingshuk Majumdar Department of Physics Grand Valley State University

Thanks to: Dr. Rich Vallery, Physics, GVSU Copyright: Dr. Kingshuk Majumdar

Electrostatics, Coulomb's law, and Electric Field

Fundamentals of Matter

The electrical nature of matter is inherent in atomic structure.

•Atoms are normally found with equal numbers of protons and electrons, so they are electrically neutral.

•By adding or removing <u>electrons</u> from matter it will acquire a net electric charge with magnitude equal to *e* times the number of electrons added or removed, *N*.

q = Ne

 $m_p = 1.673 \times 10^{-27} \text{ kg}$ $m_n = 1.675 \times 10^{-27} \text{ kg}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$

•The charge on an electron is called *e* and is:

$$e = 1.602 \times 10^{-19} \text{C}$$

•Total charge is:

$$6.25 \times 10^{18}$$
 electrons in 1 coulomb

Insulators and Conductors

Not only can electric charge exist *on an object,* but it can also move *through and object*.

<u>Conductors (electrical)</u>: Substances that readily conduct electric charge.

Insulators (electrical): Materials that conduct electric charge poorly.

Semiconductors: Conduct charge under certain conditions.

Charging Up

LAW OF CONSERVATION OF ELECTRIC CHARGE

During any process, the net electric charge of an isolated system remains constant (is conserved).

It is possible to *transfer* electric charge from one object to another.

 \rightarrow The body that loses electrons has an excess of **positive charge**.

 \rightarrow The body that gains electrons has an excess of *negative charge*.

Charging by Contact

What happens if two equal sized conductors (one charged and the other uncharged are touched together?

Polarization

Charging by Induction

Concept Test #1

Three identical conducting spheres on individual insulating stands are initially electrically neutral. The three spheres are arranged so that they are in a line and touching as shown. A negatively-charged conducting rod is brought into contact with sphere A. Subsequently, someone takes sphere C away. Then, someone takes sphere B away. Finally, the rod is taken away. What is the sign of the final charge, if any, of the three spheres?

"Observing" Charge

We don't see charge directly but rather observe its effects on the surrounding environment

Observed effects of charge: ≻Sparks ≻Shocks ≻Force

Charles Coulomb

Coulomb's Law

The magnitude of the electrostatic force exerted by one point charge on another point charge:

• is proportional to the magnitudes of the charges interacting

 inversely proportional to the distance between the charges squared

$$=8.85 \times 10^{-12} \text{ C}^{2}/(\text{N} \cdot \text{m}^{2}) |F| = k \frac{|q_{1}||q_{2}}{r^{2}}$$
$$= 1/(4\pi\varepsilon_{o})$$
$$= 8.99 \times 10^{9} \text{ N} \cdot \text{m}^{2}/\text{C}^{2}$$

Direction: ≻Like charges <u>repel.</u> ≻Unlike charges <u>attract.</u>

Coulomb's Law and Gravity

One of Newton's crowning achievements was a law that described the way two bodies interacted gravitationally:

G = 6.67x10⁻¹¹ Nm²/kg² Attractive ONLY Coulombs law similarly describes the way two bodies interact electrostatically:

$$F_{\rm C} = \frac{\mathbf{k}q_1q_2}{r^2}$$

k = 8.99x10⁹ Nm²/C² Attractive OR repulsive

Both are inverse square laws

Concept Test #2

Consider the two charges shown in the drawing. Which of the following statements correctly describes the direction of the electric force acting on the two charges?

$$q_1 = +3.2 \ \mu C$$
 $q_2 = -1.6 \ \mu C$

a) The force on q_1 points to the left and the force on q_2 points to the left.

b) The force on q_1 points to the right and the force on q_2 points to the left.

c) The force on q_1 points to the left and the force on q_2 points to the right.

d) The force on q_1 points to the right and the force on q_2 points to the right.

Example: Charges in a Line

We have three charges in a line as shown:

$$F_{12} = k \frac{|q_1||q_2|}{r^2} = \frac{\left(8.99 \times 10^9 \,\mathbf{N} \cdot \mathbf{m}^2 / \mathbf{C}^2\right) \left(3.0 \times 10^{-6} \,\mathbf{C}\right) \left(4.0 \times 10^{-6} \,\mathbf{C}\right)}{\left(0.20 \,\mathbf{m}\right)^2} = 2.7 \,\mathbf{N}$$

$$F_{13} = k \frac{|q_1||q_3|}{r^2} = \frac{\left(8.99 \times 10^9 \,\mathbf{N} \cdot \mathbf{m}^2 / \mathbf{C}^2\right) \left(3.0 \times 10^{-6} \,\mathbf{C}\right) \left(7.0 \times 10^{-6} \,\mathbf{C}\right)}{\left(0.15 \,\mathbf{m}\right)^2} = 8.4 \,\mathbf{N}$$

Net Force:

$$\vec{\mathbf{F}} = \vec{\mathbf{F}}_{12} + \vec{\mathbf{F}}_{13} = -2.7\,\mathrm{N} + 8.4\,\mathrm{N} = +5.7\,\mathrm{N}$$

Concept Test #3

Two point charges are stationary and separated by a distance *R*. Which one of the following pairs of charges would result in the largest repulsive force?

- a) -2q and +4q
- b) -3q and -2q
- c) +3q and -2q
- d) +2*q* and +4*q*
- e) -3q and -q

Concept Test #4

Three insulating balls are hung from a wooden rod using thread. The three balls are then individually charged via induction. Subsequently, balls A and B are observed to attract each other, while ball C is repelled by ball B. Which one of the following statements concerning this situation is correct?

a) A and B are charged with charges of opposite signs; and C is charged with charge that has the same sign as B.

b) A and B are charged with charges of the same sign; and C is electrically neutral.

c) A is electrically neutral; and C is charged with charge that has the same sign as B.

d) B is electrically neutral; and C is charged with charge that has the same sign as A.

e) Choices a and c are both possible configurations.

The Electric Field

The *electric field* that exists at a point is the electrostatic force experienced by a small test charge placed at that point divided by the charge itself:

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}}{q_o}$$

SI Units of Electric Field: newton per coulomb (N/C)

Point charge q:

Electric Fields

<u>Electric field lines</u> or <u>lines of force</u> provide a map of the electric field in the space surrounding electric charges

Draw the map by imaging the direction a positive test charge would feel a force for all points in space

Electric field lines are always directed away from positive charges and toward negative charges.

Example: Superposition of Electric Fields

Where must q_1 be placed for the electric field at *P* to be zero?

$$E = k \frac{|q|}{r^2} \longrightarrow -k \frac{(16 \times 10^{-6} \text{ C})}{d^2} + k \frac{(4.0 \times 10^{-6} \text{ C})}{(3.0 \text{ m} - d)^2} = 0 \implies$$
$$k \frac{(16 \times 10^{-6} \text{ C})}{d^2} = k \frac{(4.0 \times 10^{-6} \text{ C})}{(3.0 \text{ m} - d)^2} \implies 2.0(3.0 \text{ m} - d)^2 = d^2$$

 $d = +2.0 \,\mathrm{m}$

Reading Electric Field Maps

Electric field at a **point** is *tangent* to the electric field line

Electric field lines can never cross! (superposition)

Concept Test #5

Consider the drawing, where the solid lines with arrows represent the electric field due to the charged object. An electron is placed at the point P and released at rest. Which of the following vectors represents the direction of the force, if any, on the electron?

Electric Fields and Conductors

•Recall: In a conductor charge is free to move around \rightarrow the charge in a conductor will try to get as far away as possible.

•Result: At equilibrium under electrostatic conditions, any excess charge resides on the surface of a conductor.

•At equilibrium under electrostatic conditions, the electric field is zero at any point within a conducting material.

•The conductor shields any charge within it from electric fields created outside the conductor.

Electric Energy and Potential

Moving Charges in an Electric Field

The electric field does *positive work* on the positive charge when it moves *with* the field line

The electric field does <u>negative work</u> on the positive charge when it moves against the field line

Conservative Forces and the Electric Field

Since moving perpendicular to the electric field doesn't do any work, it doesn't matter if we follow this path or move straight down from a to b

Same work is done!

Energy and the Electric Field

The Electric Potential

The electric potential at a given point is the electric potential energy of a small test charge divided by the charge itself:

SI Unit of Electric Potential: joule/coulomb = <u>volt (V)</u>

We reference the potential relative to another point \rightarrow *potential difference* ΔV :

$$V_B - V_A = \frac{\text{EPE}_B}{q_o} - \frac{\text{EPE}_A}{q_o} = \frac{-W_{AB}}{q_o}$$

$$\Delta V = \frac{\Delta (\text{EPE})}{q_o} = \frac{-W_{AB}}{q_o}$$

Electric Potential: Point Charge

Up to this point we've talked about potential in a generic sense. Now we look at potential for a *point charge*:

$$W_{AB} = \frac{kqq_o}{r_A} - \frac{kqq_o}{r_B}$$

$$V_B - V_A = \frac{-W_{AB}}{q_o} = \frac{kq}{r_A} - \frac{kq}{r_B}$$

Potential of a point charge:

At infinity, potential is zero.

Example: Potential and Point Charges

Recall that potential is a scalar quantity \rightarrow potentials simply "add"

Here we make ground at infinity •positive charges produce positive potentials (above ground) •negative charges produce negative potentials (below ground)

$$V_{A} = \frac{\left(8.99 \times 10^{9} \text{ N} \cdot \text{m}^{2}/\text{C}^{2}\right)\left(+8.0 \times 10^{-8} \text{ C}\right)}{0.20 \text{ m}} + \frac{\left(8.99 \times 10^{9} \text{ N} \cdot \text{m}^{2}/\text{C}^{2}\right)\left(-8.0 \times 10^{-8} \text{ C}\right)}{0.60 \text{ m}} = +240 \text{ V}$$

$$V_B = \frac{\left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right)\left(+8.0 \times 10^{-8} \text{ C}\right)}{0.40 \text{ m}} + \frac{\left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right)\left(-8.0 \times 10^{-8} \text{ C}\right)}{0.40 \text{ m}} = 0 \text{ V}$$

We have a -1C pt charge and +5C pt charge located on the xaxis as shown. If $V(\infty)=0$ what regions along the axis might have V=0 and E=0?

The Electric Field and Potential

The Electric Field and Potential Maps

Electric field lines

 Cross sections of equipotential surfaces at 20 V intervals

Positive Point Charge

Two Positive Charges

Dipole

	General	Point Charge
Electric Field (vector)	$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}}{q_o} ; E = -\frac{\Delta V}{\Delta s}$	$E = k \frac{ q }{r^2}$
Force (vector)	$\vec{\mathbf{F}} = \vec{\mathbf{E}} q_o$	$F_{\rm C} = \frac{\mathbf{k}q_1q_2}{r^2}$
Electric PE (scalar)	$\Delta \mathbf{EPE} = q_o \Delta V$	$\Delta \mathbf{EPE} = q_o \Delta V$
Potential (scalar)	$V = \frac{\text{EPE}}{q_o}$	$V = \frac{kq}{r}$

Resistance and Ohm's Law

Moving Charge Around

Conductor with internal \vec{E} field

Electron Drift Velocity

Shaded volume has dQ $dQ = q N_e$ $dQ = qndV = qnAv_ddt$ Where "n" is free electron density

$$I = dQ/dt = qnv_dA$$
$$J = I/A = qnv_d$$

n is huge! ~10²⁹ electrons/m³ Hence nq ~ 10¹⁰ C/m³

Current

The electric current is the amount of charge per unit time that passes through a surface that is perpendicular to the motion of the charges.

$$I = \frac{\Delta q}{\Delta t}$$

One coulomb per second equals one ampere (A).

If the charges move around the circuit in the same direction at all times, the current is said to be *direct current (dc)*.

If the charges move first one way and then the opposite way, the current is said to be *alternating current (ac)*.

Cross-sectional area A

Conventional Current

Conventional current is the

hypothetical flow of *positive charges* that would have the same effect in the circuit as the movement of *negative* charges that actually does occur.

CURRENT DEFINED

ACTUAL CHARGE FLOW

Benjamin Franklin

Ohm's Law

The resistance (R) is defined as the ratio of the voltage V applied across a piece of material to the current I through the material.

Bulb

resistance to electrical flow, it is called a resistor.

Graphical Ohm's Law

If we plot voltage versus current:

Georg Ohm

Resistance and Resistivity

For a wide range of materials, the resistance of a piece of material of length L and cross- sectional area A is:

Table 20.1 Resistivities" of Various Materials

The resistivity, ρ, is a fundamental property of the material.

Low resistivity materials make good conductors.

Material	Resistivity ρ ($\Omega \cdot m$)	Material	Resistivity ρ ($\Omega \cdot m$)
Conductors		Semiconductors	
Aluminum	$2.82 imes 10^{-8}$	Carbon	$3.5 imes 10^{-5}$
Copper	$1.72 imes10^{-8}$	Germanium	0.5^{b}
Gold	$2.44 imes 10^{-8}$	Silicon	$20 - 2300^{b}$
Iron	$9.7 imes10^{-8}$	Insulators	
Mercury	$95.8 imes 10^{-8}$	Mica	$10^{11} - 10^{15}$
Nichrome (alloy)	$100 imes 10^{-8}$	Rubber (hard)	$10^{13} - 10^{16}$
Silver	$1.59 imes 10^{-8}$	Teflon	1016
Tungsten	5.6×10^{-8}	Wood (maple)	3×10^{10}

^a The values pertain to temperatures near 20 °C.

^b Depending on purity.

Resistivity and Temperature

As metals heat their resistivity changes:

$$\rho = \rho_o \left[1 + \alpha \left(T - T_o \right) \right]$$

temperature coefficient of resistivity

$$R = R_o \left[1 + \alpha \left(T - T_o \right) \right]$$

Power in Resistors

When there is current in a circuit as a result of a voltage, the *electric power* delivered to the circuit is:

$$P = \frac{(\Delta q)V}{\Delta t} = \frac{\Delta q}{\Delta t}V = IV$$

SI Unit of Power: watt (W)

If this power is delivered to a resistor it is dissipated (usually as heat):

$$P = I(IR) = I^{2}R$$
$$P = \left(\frac{V}{R}\right)V = \frac{V^{2}}{R}$$

Which of the following would cause the resistance of a wire to *double*?

- a) Doubling the wire's length and area
- b) Halving the wire's length and area
- c) Halving the wire's length, area, and resistivity
- d) Doubling the wire's length, area, and resistivity
- e) Doubling the wire's length and halving the area

You are presented with a box of assorted copper wires that come in different lengths and thicknesses. To get a wire with the *largest* possible resistance, you should pick the

- a) thickest, longest wire.
- b) thickest, shortest wire.
- c) thinnest, longest wire.
- d) thinnest, shortest wire.

Resistors in Series

Series wiring means that the devices are connected in such a way that there is the *same electric current through* each device.

Resistors in Parallel

Parallel wiring means that the devices are connected in such a way that the <u>same</u> <u>voltage is applied across</u> each device.

When two resistors are connected in parallel, each receives current from the battery as if the other was not present.

Therefore the two resistors connected in parallel *draw more current than does either resistor alone*.

$$I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = V\left(\frac{1}{R_2} + \frac{1}{R_2}\right) = V\left($$

parallel resistors

Consider a resistor connected in series to a few batteries. If we double the voltage (by adding batteries) and double the resistance (by replacing the wire,) the current through the circuit will

- a) decrease by a factor of 4.
- b) decrease by a factor of 2.
- c) remain the same.
- d) increase by a factor of 2.
- e) increase by a factor of 4.

A 120-V, 60-W light bulb, a 120-V, 120-W light bulb, and a 120-V, 240-W light bulb are connected in parallel as shown.

The voltage between points *a* and *b* is 120 V. Which bulb glows the brightest?

- A. the 120-V, 60-W light bulb
- B. the 120-V, 120-W light bulb
- C. the 120-V, 240-W light bulb

D. All three light bulbs glow with equal brightness.

In the circuit shown in (a), the two bulbs A and B are identical. Bulb B is removed and the circuit is completed as shown in (b). Compared to the brightness of bulb A in (a), bulb A in (b) is:

A. brighter.

- B. B. less bright.
- C. C. just as bright.

D. Any of the above, depending on the rated wattage of the bulb.

Which of the two arrangements shown has the *smaller* equivalent resistance between points *a* and *b*?

A. the series arrangement

B. the parallel arrangement

C. The equivalent resistance is the same for both arrangements.

D. The answer depends on the values of the individual resistances R_1 , R_2 , and R_3 .

Three identical light bulbs are connected to a source of emf as shown. Which bulb is brightest?

A. light bulb A

- B. light bulb B
- C. light bulb C

D. both light bulbs *B* and *C* (Both are equally bright and are brighter than light bulb *A*.)

E. All bulbs are equally bright.

Circuits

Each device will be represented by brief symbols. The utility of the method becomes clear as soon as soon as you must represent a car or a blender. There are too many parts to draw them as they actually appear.

Reducing Circuits

Step 1: Replace two series resistors with a single equivalent resistor

Step 2: Replace two *parallel* resistors with a single equivalent resistor

Step 3: Replace two series resistors with a final single equivalent resistor

This single resistor draws the same <u>total</u> current

Resistors Summary

3 Resistors in Parallel have resistances of 1, 2, and 4 Ω. A current of 7 A is flowing into the parallel combination. The current in each resistor is, respectively:

Measurement of Current and Voltage

Voltmeters, ammeters, resistance gauges, digital multimeters are all at our disposal. Some are more traditional like the generic galvanometer at left; some are newer and digital, like the multimeter on the right.

Digital Multimeters (DMM)

•Ammeters are used to measure current.

•An ammeter must be inserted into a circuit so that the current passes directly through it.

•Ammeters need a *small internal resistance* to not affect the circuit.

•*Voltmeters* are used to measure *voltage* (potential difference).

•To measure the voltage between two points in a circuit, a voltmeter is connected between the points (in parallel).

•Voltmeters need a *large internal resistance* to not affect the circuit.